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PURPOSE. To develop and validate a method of predicting visual
function from retinal nerve fiber layer (RNFL) structure in
glaucoma.

METHODS. RNFL thickness (RNFLT) measurements from scan-
ning laser polarimetry (SLP) and visual field (VF) sensitivity
from standard automated perimetry were made available for
535 eyes from three centers. In a training dataset, structure–
function relationships were characterized by using linear re-
gression and a type of neural network: radial basis function
customized under a Bayesian framework (BRBF). These two
models were used in a test dataset to (1) predict sensitivity at
individual VF locations from RNFLT measurements and (2)
predict the spatial relationship between VF locations and po-
sitions at a peripapillary RNFLT measurement annulus. Pre-
dicted spatial relationships were compared with a published
anatomic structure–function map.

RESULTS. Compared with linear regression, BRBF yielded a
nearly twofold improvement (P � 0.001; paired t-test) in per-
formance of predicting VF sensitivity in the test dataset (mean
absolute prediction error of 2.9 dB [SD 3.7] versus 4.9 dB [SD
4.0]). The predicted spatial structure–function relationship
showed better agreement (P � 0.001; paired t-test) with
anatomic prior knowledge when the BRBF was compared
with the linear regression (median absolute angular differ-
ence of 15° vs. 62°).

CONCLUSIONS. The BRBF generates clinically useful relationships
that relate topographical maps of RNFL measurement to VF
locations and allows the VF sensitivity to be predicted from
structural measurements. This method may allow clinicians to
evaluate structural and functional measures in the same do-

main. It could also be generalized to use other structural
measures. (Invest Ophthalmol Vis Sci. 2010;51:5657–5666)
DOI:10.1167/iovs.10-5239

Assessing the way in which structural and functional mea-
sures in glaucoma interact is clinically important. Visual

loss is assumed to follow from, and correlate to, structural loss
caused by the disease process. It would be clinically useful to
know the magnitude and location of structural loss that will
result in visually important functional loss. However, current
clinical devices for measuring structural and functional deficits
are far from accurate and have imperfect precision. Structural
measures of optic nerve head (ONH) topography or retinal
nerve fiber layer thickness (RNFLT) can be made using optical
imaging techniques, but these provide only surrogate measures
of the biological variable of real interest—namely, the retinal
ganglion cell (RGC) count and function. At the same time,
standard automated perimetry (SAP), the clinical cornerstone
of functional testing in glaucoma, is subject to considerable
measurement variability and is also a poor surrogate for RGC
count and function.1 Despite their limitations, these tech-
niques are currently central to the diagnosis and management
of glaucoma. It would, therefore, be beneficial if structure and
function measurements were directly linked in some way,
allowing clinicians to corroborate decisions by considering the
measurements in tandem.

Several studies have been conducted in an attempt to quan-
tify the structure–function relationship using clinical measure-
ments. These typically proceed by taking one summary value
to represent function (for example, mean deviation [MD] of
the visual field from SAP) and one number to represent the
structural data (for example, average neuroretinal rim area or
mean RNFLT), then assessing the curvilinear (e.g., log-linear) or
monotonic association between the two variables via R2, Pear-
son, or Spearman coefficients.2–5 This approach has two major
flaws: The use of summary data loses spatial information and
may reduce power, and these association measures and regres-
sion models assume a particular shape of the relationship.
Furthermore, these analyses fail to take account of spatial
associations in the data, an integral attribute of glaucomatous
loss.

Although some investigators have attempted to overcome
these limitations by analyzing smaller regions from the struc-
tural measures (for example, sectoral values of rim area) and
groups or individual points in the visual field (VF),6–12 we
propose that much more could be gained by analyzing the data
in its high-resolution form. For example, in scanning laser
polarimetry (SLP), RNFLT estimates are yielded over an image
space of several thousand pixels. These are high-dimensional
data and any method linking structural measures to the 50 or so
individual points in the VF ideally should take this into ac-
count. Moreover, individual points from both structure (pixel
or sector values) and function (areas of VF or individual loca-
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tions) are more likely to interact as groups rather than single
independent measurements.

In recent years, a special class of artificial neural networks
(ANNs) using radial basis functions (RBFs) have received con-
siderable attention.13–16 This class of networks differs from the
ANNs that use a multilayer perceptron (MLP) approach, in that
the nonlinearity of the model is embedded in a hidden layer of
the network. This hidden layer consists of basis functions. The
key element of the RBF is that predictions can be made in a
multidimensional space that consists of mini-distributions of
possible predictions, analogous to a kernel or window when
interpolating data. RBF networks are particularly useful when
mapping two- or three-dimensional images where interpolation
is a prerequisite, with some image features being preserved
while others are not necessarily mapped exactly. In this way,
they seem most suitable to the problem of mapping the indi-
vidual points from the structural and functional measures.
Moreover, the RBF method developed for our purposes is
formulated under a Bayesian probabilistic framework to tackle
the considerable variability in measurements as well as to form
an automatic learning process. This customization leads to
what we denote a Bayesian RBF (BRBF) network.

The purpose of this study is to develop a general statistical
method for linking clinically used measures of structure and
function. We demonstrate the use of the method on measure-
ments of the RNFLT derived from SLP with variable corneal
compensation (GDxVCC; Carl Zeiss Meditec AG, Jena, Ger-
many) and individual VF locations from SAP with the purpose
of providing predictions of one measure from another and to
generate a topographic map of the spatial relationship between
the imaged structure data and individual points in the VF. It is
imperative that any new method should be developed and
tested on more than one data set. For this work, we used three
large data sets collected at three independent clinical centers.
The method, which aimed to make predictions, is compared to
the correlation approach for mapping structural and functional
measures typified by Gardiner et al. 9 In addition, we illustrate
how the method can be extended to high-resolution measure-
ments.

METHODS

Subjects

The study sample was derived from three independently acquired
populations from Moorfields Eye Hospital, London (MEH), Rotterdam
Eye Hospital, The Netherlands (REH) and the Blue Mountains Eye
Study, Australia (BMES).

MEH Data

Thirty-four healthy subjects (34 eyes), 43 glaucoma patients (43 eyes),
and 30 ocular hypertension subjects (30 eyes) were enrolled. Inclusion
criteria for the healthy subjects were a normal VF, intraocular pressure
(IOP) � 21 mm Hg, no previous history of ocular disease, and no family
history of glaucoma in a first-degree relative. For the glaucomatous
patients, inclusion criteria were history of raised IOP (�21 mm Hg),
reproducible VF defects, and absence of other disorders that may cause
VF loss. The VF defects were defined as a defect of two or more
contiguous points in the pattern deviation probability maps with P �
1% loss or greater, three or more contiguous points with P � 5% loss
or greater, or a 10 dB difference across the nasal horizontal midline at
two or more adjacent points in the total deviation plot. Ocular hyper-
tension subjects were recruited from clinic on the basis of having a
raised IOP �21 mm Hg in two consecutive visits and having at least
two normal VFs. Optic disc appearance was not used to categorize
subjects. However, the optic disc was evaluated to exclude anatomic
abnormalities such as coloboma or drusen. For all participants, one eye
was randomly selected for study if both were eligible. All subjects had

visual acuity of 20/40 or better, with ametropia �7 diopters, and had
no other significant ocular abnormality or concomitant ophthalmic
condition.

REH Data

Forty six healthy subjects (46 eyes) and 76 glaucoma patients (76 eyes)
took part in a study that has been described in detail in Reus and
Lemij.17 In short, healthy subjects had normal VF, optic discs without
structural abnormalities, IOP � 21 mm Hg, no previous history of
ocular disease, and no family history of glaucoma. The patients had a
glaucomatous appearance of the optic disc and a corresponding nerve
fiber bundle VF defect, as described by Keltner et al.18 with SAP. All
subjects had a visual acuity of 20/40 or better and had no other
significant ocular abnormality. For all participants, one eye was ran-
domly selected for the study.

BMES Data

VFs and images were available for 1540 subjects from a large popula-
tion-based study of visual impairment, common eye diseases, and other
health conditions from an elderly community in Australia. A descrip-
tion of the BMES is given elsewhere.19 Two hundred thirty healthy
subjects (230 eyes) and 76 patients (76 eyes) diagnosed with glauco-
matous optic neuropathy were selected from this population under
strict measurement quality criteria (described later). Only one ran-
domly selected eye per subject was used throughout. The criteria used
for defining glaucomatous VF loss was an abnormal result of the
glaucoma hemifield test (GHT) plus one or more of the following VF
defect classifications (top row of test points in the 24-2 pattern were
excluded to reduce the effect of lid artifact), which could not be
explained on the basis of nonglaucomatous ocular, or neurologic,
causes: (1) at least four contiguous points on the pattern deviation plot
depressed at the P � 0.5% level; (2) at least two horizontal points in
nasal step locations with a pattern deviation plot depressed at the P �
0.5% level; and (3) advanced glaucomatous field loss (hemispheric or
severe generalized field loss, with residual temporal or central islands).
Glaucoma was diagnosed if glaucomatous VF loss was present, com-
bined with matching neural rim loss at the optic disc, and gonioscopy
showed no evidence of angle closure, rubeosis, or secondary glau-
coma, other than pseudoexfoliation syndrome.

All three datasets were collected in accordance with the tenets of
the Declaration of Helsinki from studies that had local research ethics
committee approval, with all participants giving informed consent.
Data were anonymized and transferred to a secure database held at City
University London.

Measurements and Data

This study made use of measurements of the RNFLT yielded from
scanning laser polarimetry (SLP: GDxVCC; Carl Zeiss Meditec AG) and
individual VF locations from SAP. The principles of SLP have been
described by Greenfield.20 This instrumentation estimates the thick-
ness of the peripapillary RNFLT by measuring the summed retardation
in a polarized scanning laser beam reflected from the fundus. Retarda-
tion measurements at various points around the optic disc are used to
construct a thickness map of the retinal nerve fiber layer (RNFL) in
micrometers. SLP with variable corneal compensation (VCC) has been
shown to improve the estimates of RNFLT compared with earlier
versions of the technology.21 All SLP images from all three centers had
quality scores �8 and typical scan scores �80. Single SLP images were
available from all the subjects from all the centers. The 64-sector
thickness profile on the peripapillary annulus (provided by the GDx
software) for each subject and the raw images (.mif files) were trans-
ferred to a secure database.

The VF measurements were acquired in all cases with the Hum-
phrey Field Analyzer (HFA) II (Carl Zeiss Meditec, Dublin, CA), with
either full-threshold testing or the Swedish Interactive Threshold Algo-
rithm (SITA) standard test program in the standard 24-2 test pattern.
For the MEH and REH data, all VFs were considered reproducible as
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well as reliable. The VFs from MEH data were all tested with the SITA
standard program. VF reliability indices applied were fixation losses
�15% and false-positive and false-negative response rates �25%. In the
REH data, 29 healthy subjects and 73 glaucomatous subjects were
tested with the full-threshold program and the others with the SITA
standard program. Reliability indices applied were fixation losses
�25% and false-positive and false-negative response rates �20% for the
full-threshold test and �7% for the SITA standard test. Higher false-
negative response rates were accepted in eyes with advanced field loss
(up to 33%). All VFs in BMES were tested with the full-threshold
program. Stricter reliability criteria were applied: fixation loss and
false-positive and false-negative responses �15%. In all eyes, the two
VF test points above and below the blind spot were excluded, and the
remaining 52 raw sensitivity values (in decibels) were transferred to a
secure database for analysis.

In this study, the MEH and REH datasets (229 eyes in total) were
used for development of the models, and the BMES dataset (306 eyes
in total) was used for independent testing to demonstrate the gener-
alization of the method. The image and VF quality criteria were used
only for the purpose of selecting reliable measurements and were not
used in the modeling. Moreover, the proposed model does not need
the initial labeling of the subject data as being from glaucomatous or
healthy eyes, and under the Bayesian framework, no manual input
parameters are required.

Statistical Models

What follows is a description of the principal methods and models
developed. Technical and mathematical details can be found else-
where22 and are reviewed in the Appendix. The BRBF model was
developed and written in commercial software (MATLAB, ver. 7.4.0
R2007a; The MathWorks, Inc., Natick, MA). An executable version of
this code is freely available from the authors.

We sought to generate a model that will map an individual struc-
tural measurement (RNFLT values from a software generated peripap-
illary profile or an individual RNFLT value at a pixel in the image) to a
sensitivity value (in decibels) at an individual VF location. Such a model
will allow the prediction of a VF sensitivity value from RNFLT values
and vice versa. In the remainder of this section, we compare the BRBF
model to the linear model that has been used widely to assess the
association between structural and functional measurements.

Starting with a linear model, consider the case in which we attempt
to predict an individual VF sensitivity value denoted ŷd (where d is one
of the 52 locations in a 24-2 HFA VF) from a series of RNFLT values
denoted xi for i from 1 to m. This can be expressed by the following
oversimplified but illustrative equation:

ŷd � wd1x1 � wd2x2 � · · · � wdmxm � cd (1)

where cd is a constant offset. The symbol on ŷd indicates that it is a
prediction rather than the real measured value denoted by yd. In this
example, the equation has 64 peripapillary thickness profile values
(m � 64), each with its own coefficient that quantifies the contribu-
tion of each x value to the prediction. Thus, each y value can be
predicted by a linear combination of x values. With some actual data
we can find some real numbers for the w terms by least-squares
regression. This calculation attempts to fit an equation that minimizes
the difference between the predicted and measured values. It yields an
individual equation for each y value that can be enumerated across all
the points, to predict a complete VF from a given vector of x values.
This classic multiple linear regression can be adapted to select only
those x values that are statistically significant for the prediction of y
values, by using techniques such as stepwise multiple regression23

with the forward-selection scheme. In the linear model described by
equation 1, the w values (divided by their standard errors) quantify the
amount of meaningful contribution made by x values to predict the y
values. The largest absolute w term (with respect to the variability in
estimating the term) would indicate the x value that affects the yd

value the most, in the sense that a change in this x value results in the
largest change in yd. Similarly, the next largest absolute w term would
indicate the second most important term and so on. Equivalently, one
could look at the relationship between the yd value and each x value
separately and simply calculate the correlation coefficient based on the
raw data or on the ranks of the data (Spearman’s �) and end up with a
similar result. Loosely speaking, this is the approach of Gardiner et al.,9

who used neuroretinal rim area estimated from scanning laser ophthal-
moscope measurements (Heidelberg Retina Tomograph [HRT]; Heidel-
berg Engineering, Heidelberg, Germany) as the surrogate structural
measurement for glaucomatous damage. Particularly, in the linear
model implemented for this study, the VF sensitivity was unlogged
from the decibel value and the prediction from this model was con-
verted back to the decibel scale when compared with the measured
sensitivity. We will refer to this method as a classic linear model.

This classic linear model approach makes several restrictive and
incorrect assumptions about the data. First it assumes that each x value
is independent of all the other x values,24 whereas, in reality, the x and
y values are topographically and physiologically related and may inter-
act as groups. Although one could try to demarcate these groups on
the basis of a physiological relationship between the x values or of an
anatomic map, it would be preferable for the groups to be learned from
the data rather than imposing any relationship from incomplete prior
knowledge. Second, this approach assumes that the relationship be-
tween y and x is either linear or becomes linear after some transform
(typically logarithmic). In reality, the relationship between y and x
may be more complex, with the nature of the association probably
changing across the measurement range of y. Put simply, at different
stages of disease, the apparent relationship between y and x could
switch from linear, to noisy, to curvilinear and occasionally could be
censored because of the imprecision and range of the measurement.
This notion that the association may change at different levels of
functional loss has also been asserted in published studies.25,26 The
third difficulty with the classic linear model is that outlier points exert
an overly strong influence and can yield a false association.

The RBF attempts to model the relationship between y and x
without the limiting assumptions associated with the classic linear
model just described. As an illustrative example, consider one x value,
say x1, appearing to be correlated to a y value, say y1. This apparent
relationship might be explained by the very strong relation of x1 to x2,
which in turn is very strongly associated with y1. Thus, the apparent x1

and y1 relationship may well be much weaker or not even significant.
As it will be shown in the derived structure–function relationship (see
Figs. 3–5), this covariance in the relationship between the y and x
values is modeled better with the RBF approach. Furthermore, the
central idea of the RBF is the basis functions, each of which performs
very much like a dynamic window or kernel that moves across the
data, both spatially and at various stages in disease severity, identifying
groups of measurements that appear to behave in a similar pattern. The
non-normalized Gaussian basis function used in this study has an
activation field that has a center—that is, a particular input value at
which it has a maximal output. The output tails off as the input moves
away from this point. In this way, those hidden basis functions that
have centers similar to the input x patterns will have stronger activa-
tion and will thus contribute more to the prediction of y. On the other
hand, those basis functions with weak activation will be isolated and
will not affect the prediction. Moreover, the RBF learns the parameters
from the data and this is customized for our purpose by using a BRBF.
The method makes predictions in multiple dimensions by extending
the standard relevance vector machine27 where the output is restricted
to one dimension. The VF sensitivities at different locations are implic-
itly correlated by sharing the same basis functions and parameters of
weights (see � in the Appendix). In the BRBF model, the original VF
sensitivity in decibels was used.

In general, BRBF is not restricted by the number of inputs in the
model or, more precisely, by the dimensionality of the data, so that it
can be adapted to use the RNFLT values at each pixel, rather than only
the 64-sector peripapillary thickness profile. In this study, examples of
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the SLP images used for predicting VF are shown in Figure 2. We used
an annular region, centered on the ONH. The inner and outer diame-
ters were 2.3 and 4.9 mm, respectively, so that the annulus was 26
pixels wide (compared with the eight-pixel calculation ring in the GDx
software from which the 64-sector RNFLT peripapillary profile is com-
puted). In this annulus, there are 16,512 pixels each with a retardation
value. We hypothesized that the predicted spatial structure–function
relationships would be strengthened by avoiding the data reduction to
64-sector RNFLT values. This hypothesis will be validated by the
improved structure–function relationship derived from the BRBF by
using the measurement in its higher dimensional form.

Another challenge in the modeling process involves handling the
large dimensionality of the SLP data. If the dimensionality M and the
number of data points N of a dataset satisfy M � N, the dimensionality
of the dataset can be reduced from M to N � 1, with minimal loss of
information using principal component analysis (PCA),28 because the
N data points span at least one linear hyperplane in this M-dimensional
space. Using this technique the 16,512 dimensional SLP image vectors
were reduced to 228 dimensions for analysis and transformed back to
the original SLP vectors for the purpose of visualization and evaluation
of results. Using the classic linear model on a reduced SLP image vector
with 228 elements and a 24-2 VF with 52 sensitivity values will still
result in a prohibitive number of weights (11,856) to be fitted, which
will cause significant overfitting to the noise in the data.

Testing the Model

It is well established that if validation of a modeled relationship be-
tween dependent and independent variables is performed on the same
dataset as the selection of input variable and weights, then the model
estimates will be overly optimistic.29,30 It is also well known that in
developing a model, the input variables and weights selected may vary
across different samples.31 Therefore, the models were developed on
the MEH and REH data alone, leaving the BMES data as a test dataset.

The predictive performance of the classic linear model and the
BRBF was evaluated by point-by-point analysis of the predictions of the
VF sensitivity in the 306 VFs from the BMES dataset. The predictive
performance was summarized by the mean of the absolute prediction
errors in the 52 points of the VF.

Code was written in commercial software (MATLAB ; MathWorks)
to display the results and present the output of the linear and BRBF
models via a graphic user interface. One graphic output was a struc-
ture–function map in a format similar to that described by Gardiner
et al.9 The structure–function relationship was defined by the corre-
sponding functional change given a subtle structural change, which is
mathematically modeled by the derivative of the BRBF (Appendix).
This derivative describes the relationship between y (VF sensitivity)
and x (RNFLT) at each VF location. The other output from this analysis
consisted of point-by-point predictions of each subject’s VF, as repre-
sented by the HFA grayscale (which was replicated for this purpose).
These outputs were considered for (1) the classic linear model, (2) the
BRBF I model (based on the 64 summary RNFLT values output from the
GDx software), and (3) for the BRBF II model (based on the reduced
228 dimensional data derived from the PCA on the 16,512 individual
pixel retardation values in the broad annulus centered on the ONH).

RESULTS

A summary of the measurements—HFA mean deviation (MD),
HFA pattern standard deviation (PSD), and GDx nerve fiber
indicator (NFI)—for each of the datasets is given in Table 1.

The mean (SD) absolute prediction error of VF sensitivities
in the 306 eyes from the BMES data were 4.9 dB (4.0 dB) for the
classic linear model. In comparison, both BRBF models yielded
a nearly twofold improvement (P � 0.001; paired t-test) in
performance (mean [SD]): BRBF I 2.9 dB (3.7 dB) and BRBF II
2.8 dB (3.8 dB). In the BRBF I and II models, the training
process described in the Appendix selected 49 and 73 basis
functions, respectively, in the hidden layer.

Figure 1 summarizes the predictive performance of the
classic linear model and the BRBF I model across the range of
VF sensitivity measurements. BRBF II demonstrated a predic-
tive performance similar to that of BRBF I. Published test–retest
differences (5th and 95th percentile limits)32 across all loca-
tions from two VF tests from each of 49 individuals have been
superimposed on Figure 1b. On inspection, these limits are
similar to the 90% prediction limits when using the BRBF to
predict the VF from a GDx RNFLT measurement of the same
individual. Note that predictions at higher sensitivities (�30
dB) tend to be slightly lower than the actual values, whereas at
lower sensitivities (�20 dB), the predictions tend to be higher.

Figure 2 gives some case examples of the predictions. In
some cases, the classic linear model overestimates the defect
severity of the VF (Fig. 2I, 2III) and in other cases predicts a
less damaged VF (IV), when compared with the true measured
VF. In Figure 2II the classic linear model matches the overall
average sensitivity of the VF but fails to capture the spatial
location of this loss. In each case, the BRBF better estimates the
true VF, with spatial features of the measured defects generally
retained. In Figure 2IV the BRBF model manages to predict the
advanced defect severity. More examples are provided as Sup-
plementary Material, http://www.iovs.org/cgi/content/full/51/
11/5657/DC1.

Figures 3, 4, and 5 provide topographical maps of the spatial
relationship between the RNFLT positions on the peripapillary
annulus and VF sensitivity at all the points in the VF, by means
of classic linear regression, BRBF I, and BRBF II, respectively.
The agreement between the derived structure–function rela-
tionship and the anatomic benchmark was also summarized by
calculating the absolute angular difference between the direc-
tion with the strongest derived relationship and the anatomic
benchmark. This difference was calculated as the median of
the absolute angular difference across all locations in a spatial
relationship map, such as Figures 3, 4, and 5. Both visual
inspection on the spatial relationship and the quantified agree-
ment with anatomic prior knowledge showed that the struc-
ture–function relationship derived by the classic linear regres-
sion model (Fig. 3) has little concordance (median absolute
angular difference of 62°) with the anatomic benchmark.33

This correspondence improves (P � 0.001; paired t-test) with

TABLE 1. A Summary of the Measurements of the Three Datasets (MEH, REH, BMES) Used in This Study

Data Set Ocular Status Sex (n) Age (y) MD (dB) PSD (dB) NFI

MEH Healthy 19 M, 11 F 40.6 � 15.6 (21, 75) 1.26 � 0.76 (0.09, 3.30) 1.47 � 0.28 (1.12, 2.27) 16 � 8 (2, 30)
OHT 13 M, 21 F 60.7 � 11.1 (21, 75) 1.07 � 0.82 (0.10, 3.06) 1.35 � 0.27 (1, 2.1) 20 � 10 (5, 43)
Glaucoma 28 M, 15 F 60.8 � 13.1 (31, 84) �4.02 � 2.55 (�12.00, 1.15) 4.93 � 2.93 (1.49, 12.50) 42 � 18 (11, 80)

REH Healthy 23 M, 23 F 60.4 � 12.1 (23, 77) 0.38 � 0.99 (�1.55, 2.73) 1.63 � 0.26 (1.13, 2.30) 21 � 9 (2, 43)
Glaucoma 47 M, 29 F 62.2 � 10.1 (30, 82) �9.52 � 8.43 (�30.39, 1.25) 8.35 � 4.32 (1.99, 15.92) 63 � 21 (21, 98)

BMES Healthy 99 M, 131 F 69.3 � 6.5 (60, 87) 0.21 � 1.07 (�1.26, 3.03) 1.53 � 0.29 (1.12, 2.55) 19 � 10 (2, 49)
Glaucoma 25 M, 51 F 72.0 � 6.3 (61, 78) �7.94 � 6.55 (�29.67, 1.56) 6.97 � 3.76 (1.67, 15.56) 65 � 24 (27, 98)

The data are expressed as the mean � SD (min, max). MD, PSD, and GDx NFI results are provided for the three datasets. OHT, ocular
hypertension.
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the BRBF I model (median absolute angular difference of 15°)
in general, and improves further (P � 0.001; paired t-test) still
with the BRBF II model (median absolute angular difference of
12°), especially at the points around central vision and blind
spot. This result is consistent with the BRBF models learning to
encode the structure–function relationship during the training.

DISCUSSION

The application of ANNs to both functional and structural
measurements in glaucoma is not a new idea.34–40 Most of
these applications have tended to use a conventional MLP

ANN. Technically, there are several advantages of the RBF over
MLP ANNs. For example, with the latter, there is an input, and
the distributed pattern “lights up” all hidden units, to contrib-
ute to the prediction of the output, which makes them com-
bine and interfere with each other. This typically yields a
highly nonlinear training process with mathematical difficulties
that result in a slow convergence of a training procedure.16

Moreover, the complexity of hidden unit patterns causes diffi-
culty when interpreting the result, because the connection
among units and the hidden-unit output do not have any
physical or realistic meaning: they are simply numbers that can
produce a correct output. Hence, MLP ANNs are less suitable

FIGURE 1. Distributions of the error between the predicted and the measured sensitivity for each VF
location in 306 eyes from the BMES data, stratified by VF sensitivity. Each error bar summarizes the
predictive performance over a 2-dB range from 0 to �36 dB. Thin vertical lines: 90% prediction limits (5th
and 95th percentile of error), each box indicates the interquartile range of the prediction error (25th and
75th percentile error) with the line in the box indicating the median error. The dotted line of unity
indicates perfect prediction (no error). The predictive performances of (a) the classic linear model and (b)
the BRBF I model are shown. (b, solid lines) Previously published (5th and 95th percentiles) test–retest
limits32 for VF data derived from the point-wise differences between two VFs tested over a short period.

FIGURE 2. Model predictions for
four cases from the BMES dataset. For
each case (I–IV), the top row shows,
from left to right, HFA VF grayscales
for the measured VF, the VFs pre-
dicted from the classic linear regres-
sion, and the BRBF with 64-sector
RNFLT (BRBF I), respectively. The
predicted VF from BRBF II with
16,512-pixel annulus from the GDx-
VCC SLP images was in general sim-
ilar to the one from BRBF I. The row
of graphics (below) shows the SLP
image annulus and the correspond-
ing 64-sector RNFLT (black line)
used to predict the VFs. The colored
lines in the 64-sector RNFLT plot in-
dicate the top five RBFs with the
strongest activation (those contribut-
ing the most to the prediction). More
examples are provided as Supple-
mentary Material, http://www.iovs.
org/cgi/content/full/51/11/5657/DC1.
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for the mapping of points in different measurement spaces,
which requires a detailed understanding of the hidden layer
output and other manipulation (e.g., derivatives) within the
network. In this study, although an MLP provided a prediction
accuracy comparable to the BRBF (data not shown), the spatial
aspects of the structure–function relationship were poorly
predicted. This deficiency probably resulted from complex

interactions among the large number of weights in the MLP
model. In contrast, RBF substitutes hidden layers in MLP with
a set of basis functions, which leaves the solution of weights in
a linear space. The Gaussian basis function forms a local rep-
resentation in the hidden unit, each of which can be under-
stood as a representative of similar input patterns (Fig. 2). With
a given RNFLT input, only a few representatives will be acti-

FIGURE 3. A topographical map de-
scribing the relationship between
the 64-sector RNFLT profile and indi-
vidual VF locations, as described by
classic linear regression. The map is
in the shape of an HFA 24-2 VF test
for a right eye. Each location is rep-
resented by a circular graph made up
of 64 bars representing the correla-
tion value between the VF location
and the RNFLT at the corresponding
angle. In this instance, the correla-
tions are derived from scaled values
of the weights given in equation 1.
The length of the bar indicates the
magnitude of the correlation: red bars,
positive correlation; blue bars, nega-
tive correlation. The green bar with an
asterisk indicates the location of ex-
pected strongest correlation on the ba-
sis of the anatomically derived map
from Garway-Heath et al.33

FIGURE 4. A topographical map de-
scribing the relationship between
the RNFLT profile and individual VF
points as described by BRBF I using
the 64-sector RNFLT profile. The
composition of the graph is the same
as Figure 3, with the green bar with
an asterisk indicating the location of
the expected strongest correlation
on the basis of the anatomically de-
rived map from Garway-Heath et al.33

In this instance, the correlations are
derived from scaled values in equa-
tion 13.
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vated and contribute to the VF prediction (Fig. 2). Further-
more, the RBF handled within a Bayesian probabilistic frame-
work,27 as developed for our purposes, is unlike most other
ANN approaches because it is independent of any subjective
input parameter and thus requires no model validation on a test
dataset, provided that the training dataset is representative and
sufficiently large to enable modeling of the many different
states of the VF. However, for this study, the trained model is
still tested on a separate, independent dataset to illustrate the
generalization of the model performance. One technical limi-
tation of the current BRBF model, despite its good perfor-
mance, is that it assumes that the variability in the VF measure-
ments is largely Gaussian, which is not optimal, given that it is
often skewed and heavily tailed.32

VF locations have been related to sectors of the ONH using
an anatomic map33 derived by overlaying an appropriately
scaled VF grid on RNFL photographs and tracing nerve fiber
bundles or defects from various VF locations to the ONH
margin. Gardiner et al.9 produced a topographical map of the
relationship between sectors of the ONH and locations in the
VF by considering the linear correlation between Heidelberg
retina tomography neuroretinal rim area and VF sensitivity at
each point in the VF. The classic linear model is akin to that
derived by Gardiner et al. except that the SLP measurements
from GDx imaging are used. The maps derived from the BRBF
models (Figs. 4, 5) indicated a closer concordance with the
anatomically derived landmark than did the map derived from
the classic linear model (Fig. 3). In addition, the predictions on
point-wise VF sensitivities in the validation dataset were, on
average, better with the BRBF method than with the classic
linear model. A plausible explanation for the improvements
afforded by the BRBF technique is that it models the spatial and
quantitative structure–function relationship more precisely.
The technical and statistical advantages of the BRBF model
over the classic linear model support this notion. For example,
the BRBF considers that the VF points, and indeed RNFLT
values acquired from different discreet areas, interact as groups
rather than as independent measurements. The BRBF also ac-

commodates the covariance and nonindependence of the mea-
surements. It is less affected by outlying observations and
makes no assumption about the linearity of relationships. Of
course, one difficulty in generating any type of map, driven by
data or anatomic observation, is the restriction in the sampling
of VF points. These are, for example, probably not optimally
placed for estimating RGC density nearer the fovea.

The range and distribution of differences between the mea-
sured VF sensitivity values and those predicted from the RNFLT
by the BRBF, at different levels of sensitivity, is shown in Figure
1b. This profile is remarkably similar to published limits for
test–retest variability when two VFs are measured within a
short time.32 This similarity suggests that, on average, a VF
predicted by the BRBF from RNFLT values has measurement
noise equivalent to that found in a newly measured field. This
finding is not as exciting as it may first appear, because it is
well established that the measurement noise in VFs is already
very high, prohibiting straightforward clinical diagnosis of glau-
comatous defects and monitoring progression. Nevertheless,
this finding illustrates that the range and scale of the average
predictive performance of the BRBF model is much better than
the classic linear model approach, which completely fails to
predict the full range of VF values (Fig. 1a).

Although the mean absolute prediction error is reduced
with BRBF I and II, the standard deviations of the absolute
prediction errors of both BRBF models are still large (3.7 and
3.8 dB). This can also be observed in more detail in the
prediction limits shown in Figure 1b. Despite of the general
similarity between the prediction limits and VF test–retest
limits, predictions at the normal end of the range still tend to
be lower than the actual VF measurements and at the damaged
end, predictions tend to be higher than actual VF measure-
ments. The reported retest differences,32 on average, are very
small at the normal or healthy end. At the damaged end, the
retest values tend to be higher, but the median BRBF predic-
tions are slightly higher than the retest values. This likely
reflects the difficulty the prediction from RNFLT images have
in identifying small, focal defects. Moreover, the floor effect in

FIGURE 5. A topographical map de-
scribing the relationship between
the RNFLT profile and individual VF
points as described by BRBF II, using
the 16,512 pixel retardation values
from the SLP image. The composi-
tion of the graph is the same as Fig-
ures 3 and 4 with the green bar with
an asterisk indicates the location of
expected strongest correlation on the
basis of the anatomically derived map
from Garway-Heath et al.33 In this in-
stance, the correlation values are de-
rived from scaled values in equation 13
and are summarized in 64 sectors for
the purpose of comparison.
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the VFs and SLP images41,42 and the atypical scan pattern in SLP
images, which may be associated with glaucoma severity,43 may
be additional causes of the overestimation at the lower end of
the VF sensitivity. Furthermore, because the diagnosis of sub-
jects in REH datasets includes structural criteria, the normal
subjects in the training dataset may have supernormal structure
and the glaucomatous subjects have greater than average struc-
tural damage. This potential bias on subject selection may
distort the structure–function relationship. Therefore, the
training process may be improved by including a range of
glaucoma severity in subjects defined only by VF loss. Another
factor that may confound the reported prediction accuracy is
that the models were trained with VFs tested with both SITA
and full-threshold programs, whereas they were evaluated on
VFs tested only with full-threshold program. This may, in part,
account for the observed tendency for the prediction to over-
estimate the sensitivities in the test dataset due to the higher
sensitivities obtained with SITA compared with the full-thresh-
old program.44 However, this effect would be small because
the sensitivity difference with two programs is just 1.3 dB, on
average.44

Recent investigations attempting to elucidate the structure–
function relationship in glaucoma generally have the goal of
assessing the relative accuracy of structural and functional tests
throughout the course of the disease.45,46 For example, loss of
function without loss in structure that does not adhere to a
particular structure–function model’s prediction may be an
indicator of a nonglaucomatous process, measurement impre-
cision, or some artifact in the image of the structure or function
test. Our long-term goal is to use the BRBF technique to
provide a relevant clinical tool that indicates concordance
between the VF and the chosen surrogate measure for struc-
tural loss. For example, when a VF and structural measure
derived from GDx, HRT, or optical coherence tomography
(OCT) is available, a chart mapped in VF space will be provided
indicating areas where the measurements are in concordance
(within a certain range of accuracy and precision) and where
they are not, it could provide clinically useful information
about the reliability of the individual measurements or diagnos-
tically useful information.

It is an imperative that any new statistical method should be
developed and tested on more than one dataset.30 We had
access to three large, independent datasets, each collected at
one of three clinical centers. The inclusion criteria for glauco-
matous and healthy subjects were generally consistent across
the three samples. However, as the purpose of this study was
not to determine diagnostic performance, the precise defini-
tions for glaucoma were less important. In fact, the mixture of
data can be viewed as an advantage in the study design. How-
ever, further testing on different datasets, especially where
realistic estimates of measurement precision have been per-
formed (from test–retest measurement), is still required and is
being undertaken in our laboratory and elsewhere.

The BRBF method is not limited to one type of input of
structural measurement or imaging device. It was shown to
handle input of the GDx RNFLT peripapillary profile (64 val-
ues) as well as the PCA-reduced RNFLT values at 16,512 pixels
in a wide peripapillary annulus. It could be used on neuroreti-
nal rim area values from scanning laser ophthalmoscopy tech-
nology or RNFLT values derived from OCT technology, or any
other surrogate measure of glaucomatous structural loss. More-
over, we have demonstrated, albeit qualitatively with the maps
in Figure 5, that using the surrogate measures of RNFLT in their
high-dimensional form provides mapping that is closer to the
expected structure–function relationship. We speculate that
the next generation of Fourier domain OCT instrumentation,
now finding its way into clinics and providing volumes of data
for RNFLT, will be particularly amenable to this method.

In conclusion, we have introduced a new statistical method
for describing the relationship between functional and struc-
tural measurements used in the clinical evaluation of glaucoma.
Evidence from a dataset independent of those used to derive
the model indicates that the BRBF method has advantages over
standard statistical approaches for modeling these relation-
ships, and estimates of functional deficits from structural mea-
sures yielded from this method are better than those derived
from a classic linear regression approach. This method can
provide a platform from which clinically useful tools can be
derived for mapping and charting concordance between VF
measurements and RNFLT measurements in glaucoma.

APPENDIX

Our proposed method of linking the structural and functional
measurements is formalized by a function �, which predicts a
functional measurement y from a structural one x : y � �(x).
This calculation sets a mathematical framework for the ques-
tion: what would be the corresponding functional change (�y)
for the structural change �x : �y � �(x � �x) � �(x)?
Because we are interested in subtle structural change to model
the slow progression of RNFL damage, we assume that �x
becomes very small and tends toward 0. The structure–func-
tion relationship is then defined with the general equation

lim
�x30

�y

�x
� lim

�x30

��x � �x	 � ��x	

�x
� 
x� (2)

where � is differentiable with regard to x, and 
x� is the
gradient of � at x. Since we are sampling subjects rather than
considering the whole population, the final term in this equa-
tion must be expressed as a statistical expectation of 
x� or,
for simplicity, the mean of 
x�.

We examined classic linear regression and BRBF as the
choice of function �. The latter was extended from the rele-
vance vector machine (RVM),27 where the output is originally
only one-dimensional. The extension was similar to the model
derived by Thayananthan et al.47 In particular, VF sensitivity is
assumed to be

yd
n � wd

T��xn	 � 	d (3)

where yd
n is the dth element in the measurement of the nth

subject, xn is the RNFLT measurement (64-point profile or SLP
image) vector, wd is a weight vector, 	d is an additive 0-mean
Gaussian noise N(0, 
d

2) with variance 
d
2, and the radial basis

function vector �(xn) is defined to be M�1 dimensional for M
bases: �(xn) � [1, �1(xn), �2(xn),…, �M(xn)]T, where each
element is a radial basis function with center �m and an isotro-
pic covariance

�m�xn	 � exp���m�xn � �m	T�xn � �m	� (4)

If all weight vectors wd are organized into a matrix W colum-
nwise, then, using Bayesian methodology, we assign a prior
over W

wd � N�0, 
	 and p�W � 
	 � �
d

N�0, 
	 (5)

where 
 is a diagonal matrix whose elements are �1
�1,

�2
�1,…, �M

�1 on diagonal, and 0 otherwise. Each �m
�1 rep-

resents the average variance of the weights for the mth basis.
According to Bayesian methodology, priors of hyperparam-

eters are defined over �m and 
d � 
d
�2
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p��	 � �
m

gamma��m � a, b	, p��	 � �
d

gamma�
d � c, d	 (6)

where � and � are vectors of �m and 
d, respectively, and
gamma(am � a, b) is a gamma distribution with parameters a
and b.

This framework forms the objective function, which is the
probability of all parameters W, �, and �, given the observa-
tions Y

p�W, ��, 

 � Y	 � p�W � Y, ��, 

	p���, 

 � Y	 (7)

where Y is a matrix, the columns of which are yn for n from 1
to N.

In the first item in equation 7, it is straightforward to infer
that wd is independent from any other weight vectors, given Y,
�, and �. Consequently

p�W � Y, ��, 

	 � �
d

p�yd � wd, 
d	p�wd � ��	

p�yd � ��, 
d	
� �

d

N��wd, �wd�
(8)

where the covariance matrix and mean for the posterior dis-
tribution of wd are

�wd � �
d��X	T��X	 � 
�1	�1 and �wd � 
d�wd��X	Tyd

(9)

where �(X) is a matrix: �(X) � [�(x1),…, �(xN)]T.
The latter item in equation 7 can be calculated as: p(�,

� � Y) � p(Y � �, �)p(�)p(�) where

p�Y � �, �)�� p�Y � W, �)p�W � �)dW

� �
w1

. . .�
wD

�
d

p�yd � wd, 
d	p�wd � �)dw1 . . . dwD (10)

� �
d

N�0, 
d
�1I � ��X	
��X	T�

With no prior knowledge on � and �, these two parameters
are assumed to be “uniformly” distributed so p(�) and p(�)
have little impact on p(�, � � Y). When an approximation
similar to that of RVM is used,27 the hyperparameters are
optimized by setting the derivative of equation 10 to 0

�m �
D

�
d

���wd

m	2 � �wd

mm�
and

(11)


d �

N � �
m

�1 � �m�wd

mm�
�yd � ��X	�wd�

T�yd � ��X	�wd�

where �wd

m is the mth element of the vector �wd, and �wd

mm is
the diagonal element at mth row and column in �wd.

The parameters are inferred by iterating between equations
9 and 11 until convergence. The radial basis centers �m are

initialized to contain all xn. As with an RVM, many of �m

become infinite during the training process so the correspond-
ing radial bases are removed accordingly. The radial basis
parameter �m is optimized by gradient descent.

Given the inferred parameters, the distribution of predicted
values, y�d given a test example x�, is computed as

p(y�d � yd, �, �)�� p(y�d � wd, �)p(wd � yd, �, �)dwd

� N��wd

T��x�	, 
d
�1 � ��x�	T�wd��x�	� (12)

where the prediction is made by the mean of the distribution
�wd

T��x�	.
Therefore, the structure–function relationship in equation 2

is implemented by

�wd

T
���xn	

�xn (13)

where

���xn	

�xn � ���1�x
n	

�xn , . . . ,
��M�xn	

�xn 	T

,

and

��m�xn	

�xn

is a vector �2�m�m(xn) (xn � �m), according to equation 4.
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